devFancy BE Developer

04. Continuous Probability Distributions

2022-06-30
devfancy

이 글은 컴퓨터학부 확률과통계 수업에서 배운 자료들을 정리한 내용입니다.

Contents

  • 4.1 The Uniform Distribution

  • 4.2 The Exponential Distribution + ALOHA

  • 4.3 The Gamma Distribution

4.1.1 Definition of the Uniform Distribution

  • It has a flat pdf over a region

    • X~U(a, b)

    • Probability density function $f(x) = \frac{1}{b-a},$ a ≤ x ≤ b

    • Cumulative distribution function $F(x) = \int_{a}^{x} \frac{b-a}{1}\, dy = \frac{x-a}{b-a},$ for a ≤ x ≤ b

  • The Expectation and the variance

    • $E(X) = \frac{a+b}{2}$

    • $Var(X) = \frac{(b-a)^2}{12}$

  • $P^{th}$ quantile of the uniform distribution

    • p^{th} quantile: (1 - p)a + pb

    • Interquartile range: (1 - 0.75)a + 0.75b - (1 - 0.25)a - 0.25b = $\frac{b-a}{2}$

  • A standard uniform distribution, $Y \sim U(0,1)$

    • $Y = \frac{X-a}{b-a}$

4.2.1 Definition of the Exponential Distribution

  • Probability distribution for failure or waiting times and inter-arrival times

  • Probability density function

    • $f(x) = \lambda e^{-\lambda x}$, for x ≥ 0

    • Depends upon a parameter $\lambda > 0$

  • Cumulative distribution function

    • $F(x) = 1 - e^{-\lambda x}$, for x ≥ 0 ↔ otherwise → 0
  • Expectation and Variance

    • E(x) = $\frac{1}{\lambda}$ and Var(x) = $\frac{1}{\lambda^{2}}$
  • $p^th$ quantile

    • $F(x) = 1-e^{\lambda x} = p$

    • $x = \frac{ln(1-p)}{\lambda} = E(X)\ln(1-p)$

    • The median of the distribution

      • $x = -E(X)\ ln\ (1- \frac{1}{2}) = E(X)\ ln\ 2$
    • The lower quartile

      • $x = -E(X)\ ln\ (1- \frac{1}{4}) = E(X)\ ln\ \frac{4}{3}$
    • The upper quartile

      • $x = -E(X)\ ln\ (1- \frac{3}{4}) = E(X)\ ln\ 4$
    • The interval of interquartile (= upper - lower)

      • $x = E(X)\ ln\ 4 - E(X)\ ln\ \frac{4}{3} = E(X)\ ln\ 3$
  • Examples of the exponential distribution

4.2.3 The Poisson Process

  • Expected waiting time and Expected number of events

    • Expected waiting time btw. two events in a Poisson process: $\frac{1}{\lambda}$

    • Expected number of events occurring within a fixed time interval $t: \lambda t$

    • Moreover, the number of events occurring within such a time interval has a Poisson distribution with mean $\lambda t$

Performance Analysis of ALOHA and Slotted-ALOHA

ALOHA Protocol

  • 컴퓨터 네트워킹 시스템인 ALOHAnet 에서 사용한 프로토콜

  • 하와이 여러 섬에 분산된 컴퓨터 간 무선통신으로 데이터 교환

  • 위성 시스템, 5G 기지국에서도 사용 중

Performance of ALOHA

  • Vulnerable period $(V_p)$ (취약구간)

  • Time interval during which the packets are susceptible to collision

  • Vulnerable period 관련 예시

  • 다음 그림을 통해 설명하면, Packet A를 기준으로 Packet A가 깨지지 않으려면, 충돌을 발생하는 Packet B구간 까지 포함해서 Vulnerable period(2T) 라고 한다. 2T라는 시간동안 다른 패킷이 끼어들면 안된다.

  • $S$ : average number of successful transmissions per transmission

    • $T$라는 시간동안 평균적으로 성공한 횟수

    • $S = \gamma G$

  • $G$ : average number of packet transmissions attempted per $T$ seconds

    • $T$라는 시간동안 전송 시도했던 패킷의 평균 횟수
  • $\gamma$ : probability of successful transmission

    • 성공한 전송의 확률

Throughput of ALOHA

  • Channel Throughput

    • Average number of attempts per slot(G) x Probability of successful transmission($\gamma$)

    $S = \gamma G = Ge^{-2G}$

  • Maximum throughput($S_{max}$)

    $S_{max} = \frac{1}{2e} = 0.184$

Delay of ALOHA (1)

Average number of retransmissions

  • Probability of success on the n-th attempt ($P_{s}$)

$(P_{s}){n} = (1 - \gamma)^{n-1} \gamma$ where $P{s} = \gamma = e^{-2G}$

  • Average number of transmission($N$)

$E[N] = \sum_{n=1}^\infty n(1-\gamma)^{n-1} \gamma = \frac{1}{\gamma} = e^{2G}$

  • Average number of retransmissions($N_{r}$)

$E[N_{r}] = E[N] - 1 = e^{2G} - 1$

  • $R$: Time between retransmission packets (재전송하는데 걸리는 시간)

    • Normalized with respect to the packet transmission time T

    • $RT = T + 2 \alpha T + \beta T + BT$

    • ⇒ $R = 1 + 2 \alpha + \beta + B$

    • where

    • $\alpha T$: one -way propagation delay of the channel (오고 가고해서 총 2번)

    • $\beta T$: transmission delay of ACK packet

    • $BT$: random delay before retransmission (변수)

  • $E[R]$: Mean time between retransmission packets (재전송하는데 평균 시간)

    • $E[R] = 1 + 2 \alpha + \beta + E[B]$ (times of T) ← B가 변수

Delay of ALOHA (2)

  • $E[B]$ : average back-off time after collision (충돌후 평균적으로 얼마만큼 delay가 생기는가)

    • $E[B] = \frac{K-1}{2}$
  • $E[D]$ : average delay time consists of

    • The time to transmit one packet

    • The time between transmissions multiplied by the average number of retransmissions

    • The propagation delay

      • $E[D] = (e^{2G} - 1)(2 \alpha + \beta + \frac{K + 1}{2}) + 1 + \alpha$

Slotted ALOHA

Slotted ALOHA

  • To improve the performance of ALOHA

  • System time is divided into slots fixed length

  • All transmitters and receivers are synchronized → ALOHA보다 단점

  • A packet is transmitted at the start of the upcoming slot

  • Vulnerable period 관련 예시

Throughput of S-ALOHA

  • Channel Throughput

    • Throughput is defined as the expected number of successfully transmitted packet per slot
    $S = p_{1} = \frac{G^{k}}{k!}e^{-G} _{k=1} = Ge^{-G}$
  • Maximum throughput($S_{max}$)

    $S_{max} = \frac{1}{e} = 0.368$

Delay of S-ALOHA

  • $E[D]$ : average delay time consists of

    • The time to transmit one packet

    • The time between transmissions multiplied by the average number of retransmissions

    • The propagation delay

    $E[D] = (e^{G} - 1)(2 \alpha + \beta + \frac{K + 1}{2}) + \frac{3}{2} + \alpha$

4.3.1 Definition of the Gamma Distribution

  • Gamma Distribution

    • Used in the reliability theory and the analysis of a Poisson process

    • It has a state space x ≥ 0 and a pdf $f(x) = \frac{\lambda^{k}x^{k-1}e^{-\lambda x}}{\Gamma(k)}$ for x ≥ 0 and

    • f(x) = 0 for x < 0, which depends on two parameters $k > 0$ and $\lambda > 0$

    • the function $\Gamma(k)$ is known as the gamma function

    • If $k = 1$, the gamma distribution simplifies to the exponential distribution with parameter $\lambda$ ($f(x) = \lambda e^{-\lambda x}$ , for x ≥ 0)

  • The Gamma Function

    • $\Gamma(k) = \int_{0}^{\infty} x^{k-1}e^{-x} dx$

    • Some special cases are $\Gamma(1) = 1$ and $\Gamma(1/2) = \sqrt{\pi},$ and in general, $\Gamma(k) - (k-1)\Gamma(k-1)$

    • for k >1. If n is a positive integer, the

    • $\Gamma(n) = (n-1)!$

    • but except for these special cases there is in general no closed-form expression for the gamma function.

  • Curves of Gamma

    • the parameter $k$ is often referred to as the shape parameter of the gamma distribution, and $\lambda$ is referred to as the scale parameter

Reference


Comments

Index